关灯
护眼
字体:

IV.数这个概念

首页书架加入书签返回目录

请安装我们的客户端

更新超快的免费小说APP

下载APP
终身免费阅读

添加到主屏幕

请点击,然后点击“添加到主屏幕”

    每个个别的数都是一个独立的对象

    §55.在我们认识到数的给出包含着对一个概念的陈述之后,我们可以尝试以0的定义和1的定义来补充莱布尼兹对个别数的定义。

    人们很容易解释说:如果没有对象处于一个概念之下,那么0这个数就属于这个概念。但是这里似乎是具有相同意谓的“没有”替代了0;因此下面的说法更好一些:无论a是什么,如果a不处于一个概念之下这个句子是普遍有效的,那么0这个数就属于这个概念。

    人们能够以类似的方式说:无论a是什么,如果a不处于一个概念之下这个句子不是普遍有效的,并且如果从

    “a处于F之下”和“b处于F之下”

    这两个句子普遍地得出a和b相同,那么1这个数就属于F这个概念。 现在还需要普遍地解释从一个数到后继数的过渡。我们试图作如下表述:如果存在一个对象a,它处于概念F之下并且具有这样的性质,使得n这个数属于“处于F之下,但不是a”这个概念,那么(n+1)这个数就属于F这个概念。

    §56.根据我们至此得出的结果,这些解释显得极其随意,因而需要说明为什么它们不能令我们满意。

    最后一个定义最容易引起怀疑,因为严格地说,在我们看来,“n这个数属于G这个概念”这个表达式的意义就像“(n+1)这个数属于F这个概念”这个表达式的意义一样是未知的。尽管我们能够借助这两个解释说明

    “1+1这个数属于F这个概念”

    意谓什么,然后我们利用这一点说明 “1+1+1这个数属于F这个概念”

    这个表达式的意义,等等;但是我们绝不能————为了给出一个极端的例子————通过我们的定义来判定,凯撒大帝这个数是否属于一个概念,这位著名的高卢征服者是不是一个数。此外,借助我们尝试的解释我们不能证明,如果a这个数属于F这个概念,而且如果b这个数也属于这个概念,那么必然a=b。因此,“属于F这个概念的这个数”这个表达式不会被证明是正确的,由此也根本不能证明数的相等,因为我们根本不能把握一个确定的数。我们已经解释了0、1,这只是假象;实际上我们只确定了 “0这个数属于”

    “1这个数属于”

    这些谈论方式的意义;但是不允许在这里把0、1作为独立的、可重认的对象进行区别。 §57.现在应该更清楚地考虑“数的给出包含着对一个概念的表述”这个表达式的涵义。在“0这个数属于F这个概念”这个句子中,如果我们把F这个概念看作实实在在的主词,那么0只是谓词的一部分。因此我避免把像0、1、2这样的数叫作概念的性质。恰恰由于个别的数只构成表述的一部分,因而它们表现为独立的对象。我在上文已提请人们注意,人们说“1这个数”并由定冠词把1表达成对象。这种独立性在算术中比比皆是,例如在1+1=2这个算式中。在我们看来,这里重要的是应该像在科学中可以应用的那样把握数概念,因此,我们不应受到数在日常语言使用中也表现为定语这一现象的妨碍。这总是可以避免的。例如,人们可以把“木星有四颗卫星”这个句子转化为“木星的卫星数是四”。这里不能把“是”看作像“天是蓝的”这个句子中那样的纯粹连词。这是因为人们可以说:“木星的卫星数是四”或“是4这个数”。这里,“是”具有“是与……相等的”、“是与……同一的”的意义。因此我们有一个算式,它断定“木星的卫星数”这一表达式与“四”这个词表示相同的对象。而且这种等式形式是算术中的主要形式。“四”这个词不包含任何关于木星或卫星的东西,这一点与上面的观点并不相悖。甚至“哥伦布”这个名字中也没有任何关于发现或美洲的东西,尽管如此,这同一个人仍被叫作哥伦布和美洲的发现者。

    §58.人们可能会反对说,我们根本不能像形成某种独立事物的表象一样形成关于我们称之为四或木星的卫星数这样的对象的表象。 [1] 但是这不应归咎于我们给予数的这种独立性。尽管人们很容易相信,在一个骰子的四点这一表象中出现某种与“四”这个词相应的东西;但这是一种假象。人们考虑一片绿色的草坪(eine grüne Wiese),并尝试用“一”(Ein)这个数词替代这个不定冠词,看表象是否发生变化。这并不增加任何东西,而表象中确实有某种与“绿色的”这个词相应的东西。当人们想象“Gold”(“金子”)这个印刷出来的词时,人们首先想到的并不是数。如果人们现在考虑这个词由几个字母组成,那么就产生4这个数;但是这个表象由此并没有变得更明确,而是可以完全没有变化。“‘Gold’(金子)这个词的字母”这个附加概念正是我们发现数的地方。在一个骰子的四点这种情况,问题有些隐蔽,因为这个概念通过点的相似性直接强加给我们,以致我们几乎注意不到它在这中间出现。数既不能被想象为独立的对象,也不能被想象为外在事物的性质,因为数既不是某种可感觉的东西,也不是外在事物的性质。也许在0这个数上问题最清楚。企图想象0个可见的星星,将是徒劳的。尽管人们可以考虑布满云层的天空,但是这里没有任何与“星星”这个词或0相应的东西。人们仅仅想象了一种事态,它能够引起下面这个判断:现在任何星星也看不见。

    §59.也许每个词都能唤起我们的某一种表象,甚至像“仅仅”这样一个词也能唤起我们的某种表象;但是这种表象不必相应于这个词的内涵;它在别人那里可以是完全不同的。因此人们大概会想象这样一种事态,它要求一个含有这个词的句子;或者可能出现这样的情况,说出的词使人们记忆起写下的词。

    这不仅发生在冠词的情况。我们没有关于我们与太阳距离的表象,大概是毫无疑问的。因为,即使我们知道必须把一把量尺复制多少次的规则,依据这一规则为我们勾画一副蓝图的任何努力依然是徒劳的,哪怕这蓝图只是有些接近我们企望的东西。但是,这并没有理由令人怀疑发现这一距离所依据的计算的正确性,也绝不会阻碍我们基于这一距离的存在作出进一步推论。

    §60.甚至像地球这样一个十分具体的东西,我们也不能形成一种如同我们已经知道的实际那样的表象;相反,我们满足于一个大小适中的球体,我们把它看作是地球的标志;但是我们知道,这个球体与地球极不相同。这样,尽管常常根本不出现我们关于我们企望的东西的表象,可是我们仍然极其肯定地对一个像地球这样的对象作出判断,即使所考虑的是地球体积。

    通过思维我们甚至常常超出可以形成表象的东西之外,而不因此失去我们推论的基础。对于我们人类来说,没有表象,思维似乎就是不可能的,即使如此,表象和被思考的东西的联系可以是完全表面的,任意的和习惯的。

    因此,对一个词的内涵无法形成表象,并不是否定一个词的意谓或排除这个词的使用的理由。这种对立的现象大概是这样形成的:我们个别地考虑语词,询问它们的意谓,然后我们把一个表象看作它们的意谓。因此对于一个词我们内心若是没有一个相应的图像,这个词似乎就没有内涵。但是人们必须总是考虑完整的句子。实际上只有在完整的句子中词才有意谓。这时我们的头脑中可能出现的一些内在图像不必相应于判断中的逻辑成分。如果句子作为整体有一个意义,就足够了;这样句子的诸部分也就得到它们的内涵。

    我觉得,这一认识有益于揭示许多困难的概念,譬如无穷小这个概念, [2] 它的影响可能不限于数学领域。

    我要求的数的那种独立性不应该意谓数词脱离句子联系而表示某种东西。相反,我仅仅是要以此排除把数词用作谓词或定语,因为这样的用法会多少改变它的意谓。

    §61.但是,人们也许会反对说,即使地球实际上是不可想象的,它依然是一个外在事物,有一个确定的位置;但是4这个数在哪里呢?它既不在我们之外,也不在我们之内。这在空间的意义上理解是正确的。确定4这个数的空间规定是没有意义的;但是由此只得出它不是一个空间对象,却得不出它根本就不是一个对象。并非每个对象都存在于某个地方。即使我们的表象 [3] 在这种意义上也不在我们的内在部分(皮下)。我们的内在部分是神经节细胞、血细胞等诸如此类之物,而不是表象。空间谓词不能应用于表象:一个表象既不在另一个表象的左边,也不在它的右边;表象相互之间没有可以用毫米标出的距离。如果尽管如此我们仍然要说表象在我们的内在部分,那么我们是想以此把它们表示成主观的东西。

    但是即使主观的东西没有位置,可4这个客观的数怎么会不在任何地方呢?现在我要说,这里根本没有矛盾。对于每个和4这个数打交道的人来说,4实际都是完全一样的;但是这与空间性没有任何关系。并非每个客观的对象都有一个空间位置。

    * * *

    [1] 这是在某种形象的东西的意义上的表象。

    [2] 这里的问题主要在于定义一个像

    df(x)=g(x)dx

    这样的方程式的意义,而不在于指明一个由两个不同点界定的长度为dx的线段。

    [3] 这个词的理解纯粹是心理学的,而不是生理学的。

    为了获得数这个概念,必须确定数相等的意义

    §62.如果我们不能有关于数的表象或直觉,我们怎么才能得到一个数呢?语词只有在句子联系中才意谓某种东西。因此重要的是说明含有一个数词的句子的意义。暂时这仍然有很大的任意性。但是我们已经确定,应该把数词理解为独立的对象。以此我们得到一类必然有意义的句子,即表达出重认的句子。如果我们认为a这个符号应该表示一个对象,那么我们必须有一个记号;它使我们到处都可以判定,b是不是与a相同,即使我们并非总能应用这个记号。在目前的情况下,我们必须解释

    “属于F这个概念的这个数,与属于G这个概念

    的那个数相同”

    这个句子的意义;就是说,我们必须以另一种方式复述这个句子的内容,同时不使用

    “属于F这个概念的这个数”

    这个表达式。以此我们给出一种表示数相等的普遍记号。在我们这样获得一种把握一个确定的数和重新认出它是相同的数的手段之后,我们就能够把一个数词给予这个数作为它的专名。

    §63.休谟就已经提到这样一种手段: [4] “如果两个数以某种方式结合起来,使得一个数总有一个单位,这个单位相应于另一个数的每个单位,我们就说它们是相等的。”数的相等必须借助一一对应来定义,这种观点近年来似乎普遍为数学家们所接受。 [5] 但是这首先产生一些逻辑方面的疑问和困难,我们不能不加检验地放过这些疑问和困难。

    相等关系不仅仅在数中出现。由此似乎得出,不应该把它解释为专属于数的情况。人们可能认为,相等这个概念先已确定,这样不需要再加上一个专门的定义,就能从相等和数概念必然得出:什么时候数是彼此相等的。

    针对这一点应该注意,对我们来说,数这个概念尚不确定,只有经过我们的解释才能成为确定的。我们的目的是构造一种判断的内容,这种判断可以被看作这样一个等式,它的每一边都是一个数。因此我们不想专为这种情况解释相等,而想用已知的这个相等概念获得被看作是相等的东西。当然,看上去这是一种非常奇特的定义,大概还没有得到逻辑学家足够的重视;但是一些例子可以说明,这不是前所未闻的。

    § 64.“线a与线b平行”这个判断用符号表示:

    a∥b,

    可以被看作等式。如果我们这样做,我们就得到方向的概念,我们说:“线a的方向与线b的方向相等。”因此,我们把第一个判断的特殊的内容分派到a和b上,由此用“=”这个更普遍的符号取代了“∥”这个符号。我们以与原初方式不同的方式分解了内容,并且由此得到一个新概念。当然,人们对这个问题的看法常常与此相反,许多教师定义说:平行线是具有相同方向的线。在这种情况下,“如果两条直线与第三条直线平行,它们就相互平行”这个句子就能够诉诸类似表达的相等句子轻易得到证明。只可惜,这样做歪曲了事实真相!因为所有几何的东西最初必然是直观的。现在我问,某人是否有关于一条直线的方向的直觉。一定是关于直线的!但是在关于这条直线的直觉中还要区别出直线的方向吗?很难!只有通过一种紧接着直觉发生的心灵活动才会发现这个概念。另一方面,人们有关于平行线的表象。只有以一种不正当的方式,即通过使用“方向”这个词来假设欲证的东西,才能形成上述那种证明;因为如果“如果两条直线与第三条直线平行,它们就相互平行”这个句子是不正确的,就不能把a∥b转变为一个等式。 以这种方式从平面的平行可以得到一个与直线情况中方向的概念相应的概念。我见过用“位置”这个名字表示它。形状这个概念来自几何相似性,譬如,人们不说“这两个三角形是相似的”,而说:“这两个三角形具有相同形状”或“其中一个三角形的形状与另一个三角形的形状是相等的。”以这种方式人们也可以从几何图形的共线关系得到一个大概还没有名字的概念。

    §65.现在,为了譬如从平行 [6] 达到方向这一概念,我们尝试下面的定义:

    “线a与线b平行”

    这个句子与 “线a的方向与线b的方向相等”的意谓相同。

    这一解释偏离了人们习惯的情况,因为它表面上是确定了这种已知的相等关系,而实际上却是要引入“线a的方向”这个只是附带出现的表达。由此产生了第二种疑问,我们由于这样一条规定会不会与著名的同一律发生矛盾。哪些是同一律呢?作为分析的真命题,它们能够从概念本身产生出来。而莱布尼兹 [7] 是这样定义的:

    “Eedem sunt,quorum unum potest substitui alteri salva veritate”.(“能够用一个事物替代另一个事物而不改变真,这样的事物就是相同的”。)

    我借用这一解释表示相等。人们是否像莱布尼兹那样说“相同的”或说“相等的”,这无关紧要。尽管“相同的”似乎表达一种完全的一致,而“相等的”只表达在这方面或那方面的一致;但是人们可以采取一种消除这种区别的谈论方式,例如,人们不说“这些线段在长度上相等”,而说“这些线段的长度是相等的”或“相同的”,不说“这些平面在颜色上相等”,而说“这些平面的颜色是相等的”。而且我们在上面那些例子中就是这样使用这个词的。现在,在普遍可替代性中实际上包含着所有同一律。 为了证明我们尝试的直线方向的定义是正确的,我们就必须表明,如果直线a与直线b是平行的,就能够处处以

    b的方向

    替代 a的方向。

    这可以简化,因为关于一条直线的方向,人们最初只知道这样一个命题:它与另一条直线的方向一致。因此我们只需要在这样一种相等的情况下,或在将会含有这样的相等作为构成因素 [8] 的内容的情况下证明可替代性。关于方向的所有其他命题都必须首先得到解释,而且对于这些定义我们可以规定:必须保证可以用一条直线的平行线的方向替代这条直线的方向。 §66.但是,针对我们尝试的定义还产生第三种疑问。在

    “a的这个方向与b的这个方向相同”

    这个句子中,a的方向作为对象 [9] 出现:而且我们以我们的定义获得重认这一对象的一种手段,譬如当它可能以另一种面貌作为b的方向出现的时候。但是对于所有情况来说,这种手段还不够用。例如,人们根据它不能判定英国与地轴的方向是不是相同的。请原谅用这个看上去荒唐的例子!当然不会有人把英国与地轴的方向混淆起来;但这不是我们解释的功劳。这丝毫也不说明,如果没有以“b的这个方向”这种形式给定q本身,那么应该肯定还是否定 “a的这个方向与q相等”

    这个句子。我们缺少方向这个概念;因为如果我们有这个概念,我们就能够规定:如果q不是方向,就应该否定这个句子;如果q是一个方向,那么前面的解释就要作出判定。这使人们很容易解释说: 如果存在一条直线b,它的方向是q,那么q就是一个方向。

    但是现在很清楚,我们在兜圈子。为了能够应用这种解释,我们必须在任何情况下已经知道,应该肯定还是应该否定 “q与b的这个方向相等”

    这个句子。 §67.如果人们要说:如果q是通过上述定义引入的,q就是一个方向,那么人们就会把引入q这个对象的方式作为它的性质来看待,而这种方式却不是它的性质。一个对象的这样一个定义实际上没有对这个对象作出任何说明,而是规定了一个符号的意谓,在做到这一点之后,定义转变为一个关于这个对象的判断,但是现在判断再也不引入这个对象,而且与关于它的其他命题处于相等的位置。如果人们选择这种出路,人们就会假定,只能以一种唯一的方式给定一个对象;因为若不这样,从q不是通过我们的定义引入的就得不出:不能以这种方式引入它。这样,所有算式就会产生这样的结果:以同一种方式给予我们的东西会被看作相同的。但这是十分自明的和毫无结果的,因而是不足道的。实际上人们由此得不出任何有别于各个前提的结论。算式可以有多方面的十分重要的应用,这主要是因为人们能够重认某种东西,尽管它们是以不同方式给出的。

    §68.由于我们以这样的方式无法得到明确限定的方向概念,并且由于相同的原因无法得到这样的数概念,因而我们尝试另一种方法。如果a这条线与b这条线相等,那么“与a这条线平行的线”这个概念的外延就与“与b这条线平行的线”这个概念的外延相等;反之,如果所述这两个概念的外延相等,那么a与b平行。因而让我们尝试着解释如下:

    a这条线的这个方向是“与a这条线平行”这个概念的外延;

    d这个三角形的这种形状是“与d这个三角形相似”这个概念的外延!

    如果我们想把这应用到我们说的情况,我们就必须以概念替代线或三角形,并且以处于一个概念之下的对象与处于另一个概念之下的对象之间一一对应的可能性替代平行或相似性。如果存在这种可能性,那么为了简便,我将称F这个概念与G这个概念是等数的(gleichzahlig),但是我必须要求人们把这个词看作一个任意选择的标记方式,不应该从语言构成、而应从这种规定中得出它的意谓。

    因此我定义如下:

    适合F这个概念的数是“与F这个概念等数的”这个概念的外延。 [10]

    §69.这种解释是合适的,最初也许不太明显。难道人们在一个概念的外延下不会想到某种不同的东西吗?从最初关于概念外延可以形成的命题可以说明人们在这里想到的是什么。这些命题如下:

    1.相等,

    2.一个比另一个更宽泛。

    现在,

    “与F这个概念等数的”这个概念的外延与“与G这个概念等数的”这个概念的外延相等

    这个句子是真的,当且仅当: “同一个数既属于F这个概念,又属于G这个概念”

    这个句子也是真的。因而这里是完全一致的。 尽管人们不在一个概念的外延比另一个概念的外延更宽的意义上说一个数比另一个数更宽,但是也绝不会出现

    “与F这个概念等数的”这个概念的外延

    比 “与G这个概念等数的”这个概念的外延

    更宽的情况;相反,如果所有与G这个概念等数的概念也是与F这个概念等数的,那么反之,所有与F这个概念等数的概念也是与G这个概念等数的。这种“更宽的”,自然不能与在数的情况出现的“大于”混淆起来。 当然以下这种情况也是可以想象的:“与F这个概念等数的”这个概念的外延比另一个概念的外延更宽或更窄,这样,根据我们的解释,后一个概念的外延就不能是数;而且人们很少说一个数比一个概念的外延更宽或更窄;但是如果真出现这样的情况,对采纳这样一种谈论方式也不会有任何妨碍。

    * * *

    [1] 鲍曼:《论时间、空间和数学》,第2卷,第565页。

    [2] 参见施罗德,《算术和代数课本》,第7、8页。科萨克:《算术基础》(Die Elemente der Arithmetik,Programm des Friedrichs-Werder'schen Gymnasiums,Berlin,1872,S.16)。康托尔:《一种普遍多样性学说的基础》(Grundlagen einer allgemeinen Mannichfaltigkeitslehre,Leipzig,1883,S.3)。

    [3] 为了使我的表达能够更方便,更容易得到理解,我在这里谈论平行。这一讨论中至关重要的东西将可以很容易地回到数相等的情况。

    [4] Nou inelegans specimen demonstrandi in abstractis(Erdm.S.94)。

    [5] 例如,在一个假言判断中,方向的相等可以作为条件或结果出现。

    [6] 定冠词表明这一点。在我看来,概念是一个单称可判断内容的可能的谓词,对象是这种内容的可能的主词。如果我们把

    “望远镜轴的方向与地轴的方向相等”

    这个句子中望远镜轴的方向看作主词,那么谓词就是“与地轴的方向相等”。这是一个概念。但是地轴的方向只是这个谓词的一部分;它是一个对象,因为它也可以成为主词。

    [7] 我相信,可以简单地用“概念”来表示“概念的外延”。但是人们会提出两点反对意见:

    1.这与我前面的断定————个别的数是对象————相矛盾,因为像“二这个数”这样的表达式中有定冠词;不可能以复数的形式谈论一、二等等,还有数只构成给出数时谓词的一部分。

    2.概念可以有相同的外延,而不重合。

    尽管我现在认为,可以提出这两种反对意见,但是这可能引导我们远离主题,我假定,人们知道一个概念的外延是什么。

    对我们这个定义的补充和证明

    §70.定义由于富有成果而被证明是有效的。一些定义可以被完全省略,同时不给证明过程造成任何缺陷,应该把这样的定义作为完全无价值的予以抛弃。

    因此让我们尝试一下,从我们对属于F这个概念的数的解释是不是能够推出数的已知性质。这里我们将满足于最简单的性质。

    为此还必须更确切地把握等数性。前面我们借助相互一一对应解释它,现在应该说明我想如何理解这个表达,因为人们从中可能很容易猜测某种直观的东西。

    让我们考虑下面的例子。如果一个饭店服务员想确信他在桌子上摆放的餐刀恰好与盘子一样多,那么他既不必数餐刀,也不必数盘子,他只要在每一个盘子的右边摆放一把餐刀,使得桌子上每一把餐刀都在一个盘子的右边。这样,盘子和餐刀就是相互一一对应的,而且这是通过相同的位置关系。如果我们在

    “a放在A的右边”

    这个句子中,考虑用不同的对象代入a和A,那么这里保持不变的内容部分就构成这种关系的本质。让我们概括和推广这一点。 当我们从涉及一个对象a和一个对象b的可判断内容把a和b分离出来时,我们就剩下一个关系概念,因而它需要以双重方式补充。如果我们在

    “地球比月亮大”

    这个句子中分离出“地球”,我们就得到“比月亮大”这个概念。反之,如果我们分离出“月亮”这个概念,我们就获得“小于地球的”这个概念。如果我们同时把“地球”和“月亮”都分离出去,则还剩下关系概念,这个概念本身就像一个简单概念那样没有意义:它总是需要得到补充才能成为可判断的内容。但是可以用不同的方式进行补充:例如,我可以不代入地球和月亮,而代入太阳和地球,而且由此同样产生出这种分离。 每对个别对应的对象————人们可以说成是主词————与关系概念之间的关系,类似于个别对象与它处于其下的那个概念之间的关系。这里主词是复合构成的。有时候,当关系是可逆的,这在语言上也表达出来,譬如在下面这个句子:“帕鲁斯和泰蒂丝是阿齐利斯的父母。” [11] 有些情况与此相反。例如,不大可能以这样的方式重新表述“地球比月亮大”这个句子的内容,使“地球和月亮”表现为复合构成的主词,因为“和”这个词总是指示某种相等位置。但是这不影响实质问题。

    因此,关系概念同简单概念一样,属... -->>
本章未完,点击下一页继续阅读
上一章目录下一页

请安装我们的客户端

更新超快的免费小说APP

下载APP
终身免费阅读

添加到主屏幕

请点击,然后点击“添加到主屏幕”